

Encapsulation and Release by multilayer Capsules

A. G. Skirtach, G. B. Sukhorukov, H. Möhwald

Max-Planck Institute of Colloids and Interfaces Golm / Potsdam Germany

1. Multifunctinal Nanoengineered Microcapsules made by LbL and IFPRI.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.

3. Methods for Remote Release:

- a) optical;
- b) ultrasound;
- c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

- a) Silver nanoparticles;
- b) Gold nanoparticles;
- c) Gold/gold sulfide nanoparticles.
- 5. Novel Nanoparticle Materials Nanorods.
- 6. Microcapsule Applications:
 - a) uptake by and release in living cells.
 - b) intracellular sensors.
- 7. Conclusions and Acknowledgements.

Microcapsules and IFPRI's scope

Max-Planck-Institute of Colloids and Interfaces

Encapsulation and Release Timeline

Max-Planck-Institute of Colloids and Interfaces

Year

Multifunctionality of Polyelectrolyte Multilayer Capsules

Max-Planck-Institute of Colloids and Interfaces

Multifunctional Nanoengineered Microcapsules

LbL Preparation Method of Microcapsules

Max-Planck-Institute of Colloids and Interfaces

1. Multifunctional Nanoengineered Microcapsules made by LbL.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.

3. Methods for Remote Release:

- a) optical;
- b) ultrasound;
- c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

- a) Silver nanoparticles;
- b) Gold nanoparticles;
- c) Gold/gold sulfide nanoparticles.
- 5. Novel Nanoparticle Materials Nanorods.
- 6. Microcapsule Applications:
 - a) uptake by and release in living cells;
 - b) intracellular sensors.
- 7. Conclusions and Acknowledgements.

2.a) Principle of pH induced encapsulation C Max-Planck-Institute (PS templates)

Macromol. Rap. Comm. 2005, 26, 961.

2.a) pH induced encapsulation

Shrunk state : not permeable to polymers Swollen state: permeable to polymers

Swell then shrink the capsules in the presence of polymer

2.b) Co-precipitation method (CaCO₃)

Max-Planck-Institute of Colloids and Interfaces

Biotech. Prog. 2005, 21, 918.

2.b) Co-precipitation method (CaCO₃)

J. Mater. Chem. 2004, 14, 2073.

2.c) Temperature shrinking method (SiO₂) State of Colloids and Interfaces

J. Phys. Chem. B 2005, 109, 18250.

2.c) Thermally shrunk microcapsules

Max-Planck-Institute of Colloids and Interfaces

Angew. Chem. Int. Ed. 2006, 55, 6412.

2.d) Optically Induced Encapsulation

Max-Planck-Institute of Colloids and Interfaces

1. Multifunctional Nanoengineered Microcapsules made by LbL.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.
- 3. Methods for Remote Release:
 - a) optical;
 - b) ultrasound;
 - c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

- a) Silver nanoparticles;
- b) Gold nanoparticles;
- c) Gold/gold sulfide nanoparticles.
- 5. Novel Nanoparticle Materials Nanorods.
- 6. Microcapsule Applications:
 - a) uptake by and release in living cells;
 - b) intracellular sensors.
- 7. Conclusions and Acknowledgements.

3.a) Laser Light induced Remote Release

Langmuir **2004**, *20*, 6988.

3.a) Laser Light induced Remote Release G Max-Planck-Institute of Colloids and Interfaces

Langmuir 2004, 20, 6988.

3.a) Laser Light induced Remote Release

Nano Lett. 2005, 5, 1371.

3.a) Laser Light induced Remote Release State Colloids and Interfaces

Nano Lett. 2005, 5, 1371.

3.b) Ultrasound induced Release

Langmuir 2006, 22, 7400; J. Mater. Chem. 2007, 17, 1050.

3.b) Ultrasound induced Release

3.b) Destruction with time in ultrasound

3.c) Magnetically induced Release

Max-Planck-Institute of Colloids and Interfaces

Langmuir 2005, 21, 2042.

1. Multifunctinal Nanoengineered Microcapsules made by LbL.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.

3. Methods for Remote Release:

- a) optical;
- b) ultrasound;
- c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

a) Silver nanoparticles;

b) Gold nanoparticles;

c) Gold/gold sulfide nanoparticles.

5. Novel Nanoparticle Materials – Nanorods.

6. Microcapsule Applications:

a) uptake by and release in living cells;

b) intracellular sensors.

7. Conclusions and Acknowledgements.

Nanoparticles for Remote Release

Max-Planck-Institute of Colloids and Interfaces

Langmuir 2004, 20, 6988; Nano Lett 2005, 5, 1371.

Gold/Gold Sulfide NP's size distribution

Max-Planck-Institute of Colloids and Interfaces

J. Phys. Chem. C 2007, 111, 555.

Measurement of Temperature Increase

Max-Planck-Institute of Colloids and Interfaces

Nano Lett. 2005, 5, 1371.

1. Multifunctinal Nanoengineered Microcapsules made by LbL.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.

3. Methods for Remote Release:

- a) optical;
- b) ultrasound;
- c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

- a) Silver nanoparticles;
- b) Gold nanoparticles;
- c) Gold/gold sulfide nanoparticles.
- 5. Novel Nanoparticle Materials Nanorods.

6. Microcapsule Applications:

- a) uptake by and release in living cells;
- b) intracellular sensors.
- 7. Conclusions and Acknowledgements.

Nanorods:

as New Materials for Remote Release

1. Multifunctinal Nanoengineered Microcapsules made by LbL.

2. Methods for Encapsulation of various Materials:

- a) pH based;
- b) co-precipitation;
- c) temperature;
- d) optical.

3. Methods for Remote Release:

- a) optical;
- b) ultrasound;
- c) magnetic.

4. Mechanism for Release – Nanoparticles-External Source Interaction:

- a) Silver nanoparticles;
- b) Gold nanoparticles;
- c) Gold/gold sulfide nanoparticles.
- 5. Novel Nanoparticle Materials Nanorods.
- 6. Microcapsule Applications:
 - a) uptake by and release in living cells;
 - b) sensors.
- 7. Conclusions and Acknowledgements.

Release Inside Living Cells

Angew. Chem. Int. Ed. 2006, 55, 6412.

Pushing Not-uptaken Capsules by Laser

Max-Planck-Institute of Colloids and Interfaces

Angew. Chem. Int. Ed. 2006, 55, 6412.

Control Experiments

Angew. Chem. Int. Ed. 2006, 55, 6412.

Sensor Applications

- 1. Polyelectrolyte multilayer capsules based on coating of polymers on microparticles were developed as carriers of encapsulated cargo.
- 2. Encapsulation by <u>pH induced swelling</u>, <u>co-precipitation</u> and <u>temperature</u> <u>shrinking</u> methods has been developed.
- 3. Remote release of encapsulated materials can be performed by a number of methods. The mechanism relies on interaction of absorbing metal nanoparticles and external energy sources, for example, laser light or ultrasound.
- 4. Nanorods are identified as effective absorbing centers for biologically relevant release applications.
- 5. A variety of applications (*bio-medicine, pharmaceutical, perfume, chemical*) can exploit encapsulation and remote release from polyelectrolyte multilayer capsules. Intracellular sensors and remote release have been developed.

ACKNOWLEDGMENTS:

- Max-Planck Institute of Colloids and Interfaces and Max-Planck Gesellschaft.
- EU FP-6 framework projects "SelectNANO" and "Nanocaps".
- VW foundation.

Thank you for your attention.