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Scale

@ Identify critical material and process parameters that
control the extent of powder segregation

@ Develop quantitative models that predict segregation
and possible re-homogenization within a process train

@ Validate models with appropriate experiments

@ Demonstrate that the models are applicable to full-scale
processes

@ In scope:

e Dense flows
o Formulated (i.e. multicomponent) mixtures

Additional considerations:

©

@ Cohesive powders
o Particle shape effects
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Competing Timescales
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o If 1oy = tforcing balance of rates
o We control forcing
o Sensitive test of ¢s.q model
e “Collapse” complex dynamic experiment onto “steady
state” measurement
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Shear Cell Simulations
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@ Vary shear rate (velocity)
@ (Mostly) Constant pressure BC
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Shear Cell Results
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o “Asymptotic” segregation | with 1 forcing frequency
@ Choose threshold segregation value to ID critical frequency
@ Scaled segregation rate collapses onto single critical curve
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Problem Statement

A Novel Approach to Segregation Problems

Testing the approach — simulated direct gravity forcing
Testing the approach — a baffled tumbler
Experimentally Testing Existing Models

Brief Objectives and Introduction

Indirect Forcing in a Baffled Tumbler

Changing the rotation rate changes ttocing
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Brief Objectives and Introduction

7 forcing
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Calculating the Effective/ CI‘lthd] Forcing Frequency

@ Mean residence time — f (effective forcing frequency)

1wy  [gsin(Bm — 81
I= Toean 2T where 7 = [ cd cos(fs) }

Khakhar and Ottino, 2002
@ Obtain critical frequency from theory to be tested, e.g.:
@ Size segregation velocity
vo=[Ks+(1-Kr(1—d)
for fixed total concentration, ¢, vs = [Ky](1 — d)
where Ky o< 4, thus, feri o (1 —d)¥
@ Frequency ratio
f Vw

fcmt \/_(1 - d)
f _ KQ\/G(dl COSIQS)I/4
ferit (1 —d)[gsin(Bpm — Bs)]1/4

Hajra, Bhattacharya and McCarthy, Powder Tech., 2012
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Model Predictions (Density Segregation)
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@ Particle roughness suggested at AGM 2015
“Proper” model will yield monotonic change in IS vs f/ ferit

@ rg for quantitative measure (1 — monotonic)
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A Granular Rheology Analogy ... Developing New Segregation Theories
Experimental Validation

Density Segregation Under Varying Conditions
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@ Segregation under different confining pressure (or constant
volume)

@ Also varying shear rate, particle size, and density ratio

@ Rheological quantity, I = yd, %, collapses data
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A Granular Rheology Analogy ... Developing New Segregation Theories
Experimental Validation

A Unified Model, Based on Rheology
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@ Segregation saturation occurs at same location as frictional
saturation

@ Model based on coordination number fits all data
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A Granular Rheology Analogy ...
Expeumental\ 1dat10n

Experimental Validation of Density Model

@ Experimental apparatus for continuous shearing

@ Run with tracer particles that are visually tracked

J. J. McCarthy Exploiting a Framework



A Granular Rheology

Experimental Validation
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Developing New S ation Theories

Experimental Va n

. ]
1]
—_ m Qp
E 90 " U He °® ]
£ ; °
S| SEmn, e
10 T, @ 1
“aith,. oifts
04 Lt ;
0.00 0.05 0.10
v

@ Measurements of velocity vs height for varying conditions

@ Matched to segregation measurements at same locations

J. J. McCarthy
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A Granular Rheology Analogy ... Developing New Segregation Theories
Experimental \ahdatlon

Experimental Validation
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@ Inhomogeneous shear means that the inertia number, I,
varies with height
@ Can easily measure v vs I for a range of conditions

@ Results confirm novel segregation saturation model
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Size Segregation

Expanded Models 3 Dl.

ity Segregation

Testing Size Segregation
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@ No simple scaling of shear rate collapses size data

@ Tried gravity, granular temperature, and inertia number

J. J. McCarthy
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@ Size segregation involves a more complex interplay between
segregation and rheology

@ Combining I and T captures both creation and finding of
voids

@ Novel observation: size ratio squared!
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£ gation
Cohesive Density Segregation
Shape Segregation

Expanded Models

Cohesive Segregation
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o Uy = %\p/_ﬁl)[ works for both cohesive and non-cohesive
systems
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@ Cohesion is important, but effective collisions still lead to

segregation
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(a) (b)
@ Tracking the periodic observed location of tracers allow a
measure of segregation based on “distance to center”
@ Comparing to sphere-sphere systems — equivalent size
parameter
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Shape descriptor # | Shortest L | Average L | “Lay down” A | “Spinning” A | Volume | “Flowing” A
Classification # 1D 1D 2D 2D 3D 2D
R? Cylinder 0.94 0.79 0.77 0.77 0.65 0.94
R? Disc 0.74 0.94 0.99 0.57 0.57 0.99
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ing Cohesion Modeling
Transport Modeling

What’s Next? (Finishing up)

Using van der Waals Cohesion
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@ Continuing simulations

@ Formal analysis to come
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Varying Cohesion Modeling
Transport Modeling
‘What’s Next? (Finishing up)

Transport Modeling (Density)

801

801 801 81)501 _ 0 dc;

@ Route to “scale up” of models to relevant-scale usage

@ Our model combines rheology and segregation; perfect for
transport equations
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