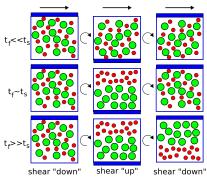
Exploiting a Framework for the Development of Segregation Rate Models

J. J. McCarthy

Department of Chemical Engineering University of Pittsburgh

June, 2019

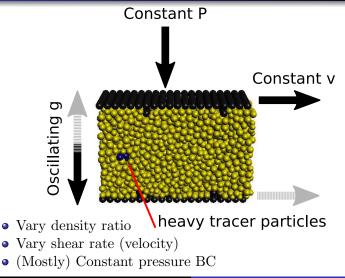
Problem Statement A Novel Approach to Segregation Problems Testing the approach – simulated direct gravity forcing Testing the approach – a baffled tumbler Experimentally Testing Existing Models


Quantitative Prediction of Segregation at Process Scale

- Identify critical **material and process parameters** that control the *extent* of powder segregation
- Develop **quantitative models that predict** segregation and possible re-homogenization within a process train
- Validate models with appropriate experiments
- Demonstrate that the models are applicable to **full-scale** processes
- In scope:
 - Dense flows
 - Formulated (i.e. multicomponent) mixtures
- Additional considerations:
 - Cohesive powders
 - Particle shape effects

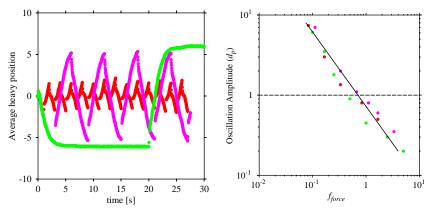
A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement **A Novel Approach to Segregation Problems** Testing the approach – simulated direct gravity forcing Testing the approach – a baffled tumbler Experimentally Testing Existing Models

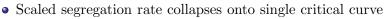
Competing Timescales



- If $t_{seg} \approx t_{forcing}$ balance of rates
 - We control $t_{forcing}$
 - Sensitive test of t_{seg} model
 - "Collapse" complex dynamic experiment onto "steady state" measurement

A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement A Novel Approach to Segregation Problems **Testing the approach – simulated direct gravity forcing** Testing the approach – a baffled tumbler Experimentally Testing Existing Models


Shear Cell Simulations


A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement A Novel Approach to Segregation Problems **Testing the approach – simulated direct gravity forcing** Testing the approach – a baffled tumbler Experimentally Testing Existing Models

Shear Cell Results

• "Asymptotic" segregation \downarrow with \uparrow forcing frequency

• Choose threshold segregation value to ID critical frequency

A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement A Novel Approach to Segregation Problems Testing the approach – simulated direct gravity forcing **Testing the approach – a baffled tumbler** Experimentally Testing Existing Models

Indirect Forcing in a Baffled Tumbler

• Changing the rotation rate changes $t_{forcing}$

Problem Statement A Novel Approach to Segregation Problems Testing the approach – simulated direct gravity forcing **Testing the approach – a baffled tumbler** Experimentally Testing Existing Models

Calculating the Effective/Critical Forcing Frequency

 $\bullet\,$ Mean residence time $\to f$ (effective forcing frequency)

$$f = \frac{1}{\tau_{mean}} = \frac{\sqrt{\omega\dot{\gamma}}}{2\pi}, \text{ where } \dot{\gamma} = \left[\frac{g\sin(\beta_m - \beta_s)}{cd\cos(\beta_s)}\right]^{1/2}$$

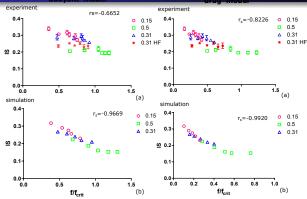
Khakhar and Ottino, 2002

- Obtain critical frequency from theory to be tested, e.g.:
- Size segregation velocity

$$v_s = [K_S + (1 - \phi)K_T](1 - \bar{d})$$

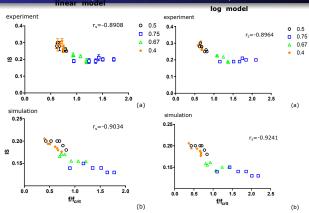
for fixed total concentration, ϕ , $v_s = [K_{\phi}](1 - \bar{d})$
where $K_{\phi} \propto \dot{\gamma}$, thus, $f_{crit} \propto (1 - \bar{d})\dot{\gamma}$

• Frequency ratio


$$\frac{f}{f_{crit}} \propto \frac{\sqrt{\omega}}{\sqrt{\dot{\gamma}}(1-\bar{d})}$$
$$\frac{f}{f_{crit}} = \frac{K_2 \sqrt{\omega} (d_1 \cos_{\beta_S})^{1/4}}{(1-\bar{d}) [g \sin(\beta_m - \beta_s)]^{1/4}}$$

Hajra, Bhattacharya and McCarthy, Powder Tech., 2012

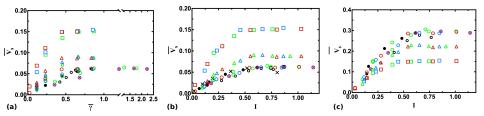
A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement A Novel Approach to Segregation Problems Testing the approach – simulated direct gravity forcing Testing the approach – a baffled tumbler Experimentally Testing Existing Models


Model Predictions (Density Segregation)

- Particle roughness suggested at AGM 2015
- "Proper" model will yield monotonic change in IS vs f/f_{crit}
- r_s for quantitative measure $(1 \rightarrow \text{monotonic})$

A Granular Rheology Analogy ... Expanded Models What's Next? (Finishing up) Problem Statement A Novel Approach to Segregation Problems Testing the approach – simulated direct gravity forcing Testing the approach – a baffled tumbler Experimentally Testing Existing Models

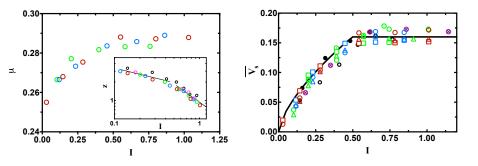
Model Predictions (Size Segregation)



"Proper" model will yield monotonic change in IS vs f/f_{crit}
r_s for quantitative measure (1 → monotonic)

Developing New Segregation Theories Experimental Validation

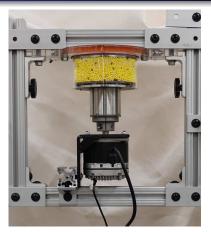
Density Segregation Under Varying Conditions



- Segregation under different confining pressure (or constant volume)
- Also varying shear rate, particle size, and density ratio
- Rheological quantity, $I = \dot{\gamma} d_p \sqrt{\frac{\rho}{P}}$, collapses data

Developing New Segregation Theories Experimental Validation

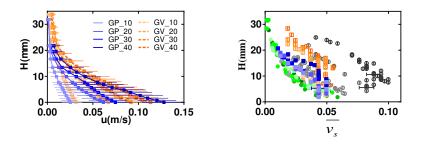
A Unified Model, Based on Rheology



- Segregation saturation occurs at same location as frictional saturation
- Model based on coordination number fits **all** data

Developing New Segregation Theories Experimental Validation

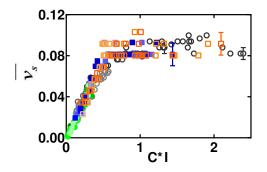
Experimental Validation of Density Model



- Experimental apparatus for continuous shearing
- Run with tracer particles that are visually tracked

Developing New Segregation Theories Experimental Validation

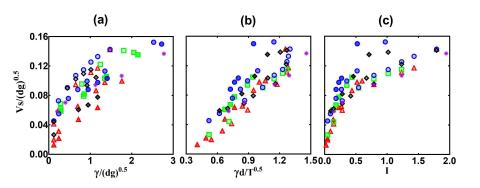
Experimental Validation



- Measurements of velocity vs height for varying conditions
- Matched to segregation measurements at same locations

Developing New Segregation Theories Experimental Validation

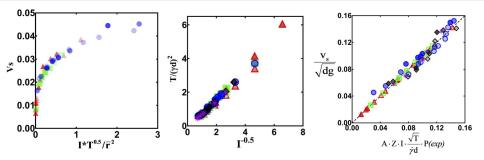
Experimental Validation



- Inhomogeneous shear means that the inertia number, I, varies with height
- Can easily measure v_s vs I for a range of conditions
- Results confirm novel segregation saturation model

Size Segregation Cohesive Density Segregation Shape Segregation

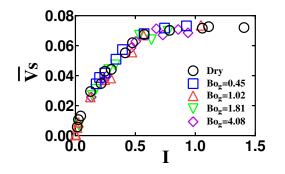
Testing Size Segregation



- No simple scaling of shear rate collapses size data
- Tried gravity, granular temperature, and inertia number

Size Segregation Cohesive Density Segregation Shape Segregation

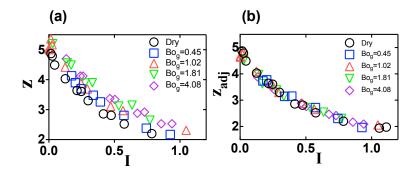
Impact of Rheology on Size Segregation



- Size segregation involves a more complex interplay between segregation and rheology
- Combining I and T captures both creation and finding of voids
- Novel observation: size ratio squared!

Size Segregation Cohesive Density Segregation Shape Segregation

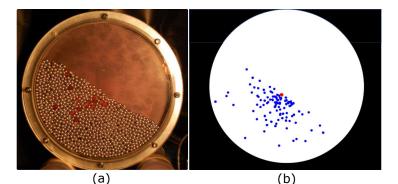
Cohesive Segregation



• $\bar{v}_s = \frac{z_{adj}(\bar{\rho}-1)}{6\beta\sqrt{\bar{\rho}}}I$ works for **both** cohesive and non-cohesive systems

Size Segregation Cohesive Density Segregation Shape Segregation

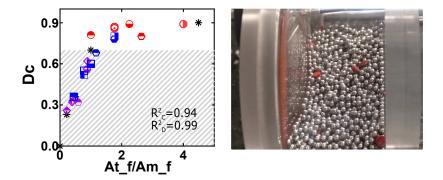
Cohesive Segregation Works: How?


•
$$z_{adj} = z \cdot (1 - \frac{F_c}{F_z}) = z \cdot (1 - \frac{4\gamma}{\alpha P d_p})$$

• Cohesion is important, but effective collisions still lead to segregation

Size Segregation Cohesive Density Segregation Shape Segregation

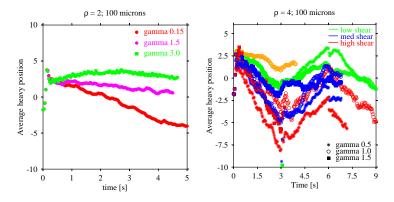
Experimental Exploration of Shape Segregation



- Tracking the periodic observed location of tracers allow a measure of segregation based on "distance to center"
- Comparing to sphere-sphere systems \rightarrow equivalent size parameter

Size Segregation Cohesive Density Segregation Shape Segregation

Effective Size of Cylinders/Discs


Shape descriptor $\#$	Shortest L	Average L	"Lay down" A	"Spinning" A	Volume	"Flowing" A
Classification $\#$	1D	1D	2D	2D	3D	2D
R ² Cylinder	0.94	0.79	0.77	0.77	0.65	0.94
\mathbb{R}^2 Disc	0.74	0.94	0.99	0.57	0.57	0.99

J. J. McCarthy

Exploiting a Framework

Varying Cohesion Modeling Transport Modeling

Using van der Waals Cohesion

- Continuing simulations
- Formal analysis to come

Varying Cohesion Modeling Transport Modeling

Transport Modeling (Density)

$$\frac{\partial c_i}{\partial t} + u \frac{\partial c_i}{\partial x} + w \frac{\partial c_i}{\partial z} + \frac{\partial v_s c_i}{\partial x} = \frac{\partial}{\partial z} \left(D \frac{\partial c_i}{\partial z} \right)$$

- Route to "scale up" of models to relevant-scale usage
- Our model combines rheology and segregation; perfect for transport equations

