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Quantitative Prediction of Segregation at Process Scale

Identify critical material and process parameters that
control the extent of powder segregation

Develop quantitative models that predict segregation
and possible re-homogenization within a process train

Validate models with appropriate experiments

Demonstrate that the models are applicable to full-scale

processes

In scope:

Dense flows
Formulated (i.e. multicomponent) mixtures

Additional considerations:

Cohesive powders
Particle shape effects
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Competing Timescales

If tseg ≈ tforcing balance of rates
We control tforcing
Sensitive test of tseg model
“Collapse” complex dynamic experiment onto “steady
state” measurement
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Shear Cell Simulations

Vary density ratio
Vary shear rate (velocity)
(Mostly) Constant pressure BC
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Shear Cell Results
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“Asymptotic” segregation ↓ with ↑ forcing frequency
Choose threshold segregation value to ID critical frequency
Scaled segregation rate collapses onto single critical curve
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Indirect Forcing in a Baffled Tumbler

Changing the rotation rate changes tforcing

J. J. McCarthy Exploiting a Framework



Brief Objectives and Introduction
A Granular Rheology Analogy ...

Expanded Models
What’s Next? (Finishing up)

Problem Statement
A Novel Approach to Segregation Problems
Testing the approach – simulated direct gravity forcing
Testing the approach – a baffled tumbler
Experimentally Testing Existing Models

Calculating the Effective/Critical Forcing Frequency

Mean residence time → f (effective forcing frequency)

f =
1

τmean
=

√
ωγ̇

2π
, where γ̇ =

[

g sin(βm − βs)

cd cos(βs)

]1/2

Khakhar and Ottino, 2002

Obtain critical frequency from theory to be tested, e.g.:
Size segregation velocity

vs = [KS + (1− φ)KT ](1− d̄)
for fixed total concentration, φ, vs = [Kφ](1− d̄)

where Kφ ∝ γ̇, thus, fcrit ∝ (1 − d̄)γ̇

Frequency ratio
f

fcrit
∝

√
ω√

γ̇(1− d̄)

f

fcrit
=

K2

√
ω(d1 cosβS

)1/4

(1− d̄)[g sin(βm − βs)]1/4

Hajra, Bhattacharya and McCarthy, Powder Tech., 2012
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Model Predictions (Density Segregation)
experiment

simulation
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Particle roughness suggested at AGM 2015

“Proper” model will yield monotonic change in IS vs f/fcrit
rs for quantitative measure (1 → monotonic)
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Model Predictions (Size Segregation)
experiment

simulation

linear  model
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“Proper” model will yield monotonic change in IS vs f/fcrit

rs for quantitative measure (1 → monotonic)
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Density Segregation Under Varying Conditions

(a) (b) (c)

Segregation under different confining pressure (or constant
volume)

Also varying shear rate, particle size, and density ratio

Rheological quantity, I = γ̇dp

√

ρ
P
, collapses data
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A Unified Model, Based on Rheology
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Segregation saturation occurs at same location as frictional
saturation

Model based on coordination number fits all data
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Experimental Validation of Density Model

Experimental apparatus for continuous shearing

Run with tracer particles that are visually tracked
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Experimental Validation
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Measurements of velocity vs height for varying conditions

Matched to segregation measurements at same locations
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Inhomogeneous shear means that the inertia number, I,
varies with height

Can easily measure vs vs I for a range of conditions

Results confirm novel segregation saturation model
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Testing Size Segregation

No simple scaling of shear rate collapses size data

Tried gravity, granular temperature, and inertia number

J. J. McCarthy Exploiting a Framework



Brief Objectives and Introduction
A Granular Rheology Analogy ...

Expanded Models
What’s Next? (Finishing up)

Size Segregation
Cohesive Density Segregation
Shape Segregation

Impact of Rheology on Size Segregation

Size segregation involves a more complex interplay between
segregation and rheology

Combining I and T captures both creation and finding of
voids

Novel observation: size ratio squared!

J. J. McCarthy Exploiting a Framework



Brief Objectives and Introduction
A Granular Rheology Analogy ...

Expanded Models
What’s Next? (Finishing up)

Size Segregation
Cohesive Density Segregation
Shape Segregation

Cohesive Segregation
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Cohesive Segregation Works: How?
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Cohesion is important, but effective collisions still lead to
segregation
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Experimental Exploration of Shape Segregation

(a) (b)

Tracking the periodic observed location of tracers allow a
measure of segregation based on “distance to center”

Comparing to sphere-sphere systems → equivalent size
parameter
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Effective Size of Cylinders/Discs
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Shape descriptor # Shortest L Average L “Lay down” A “Spinning” A Volume “Flowing” A

Classification # 1D 1D 2D 2D 3D 2D

R2 Cylinder 0.94 0.79 0.77 0.77 0.65 0.94

R2 Disc 0.74 0.94 0.99 0.57 0.57 0.99
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Using van der Waals Cohesion
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Continuing simulations

Formal analysis to come
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Transport Modeling (Density)

∂ci
∂t

+ u∂ci
∂x

+ w ∂ci
∂z

+ ∂vsci
∂x

= ∂
∂z

(

D ∂ci
∂z

)

Route to “scale up” of models to relevant-scale usage

Our model combines rheology and segregation; perfect for
transport equations
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