41th IFPRI AGM 2019 Burlington, June23-27, 2019

Consultant Report

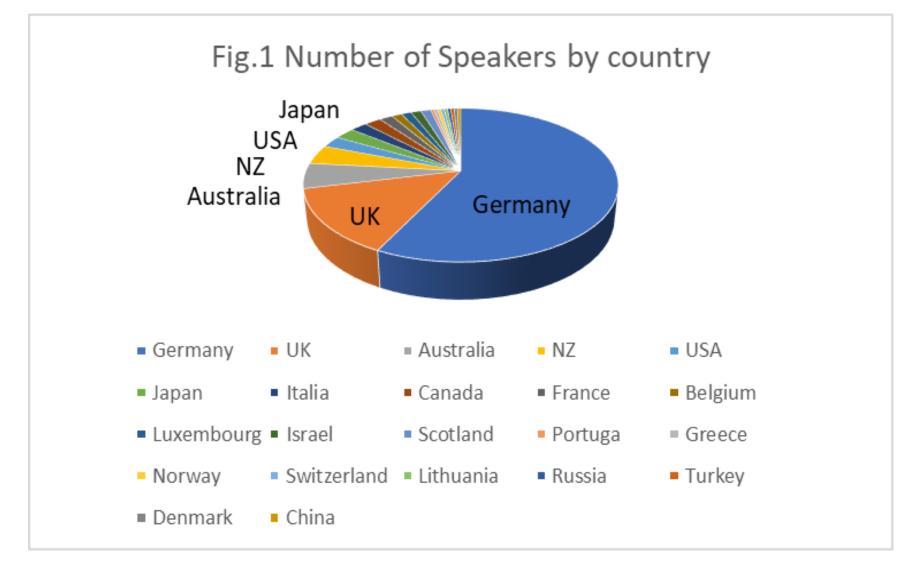
S. Watano Osaka Prefecture University, Japan

Contents

- Perspective of powder technology through PARTEC2019
- Hot topics in the near future
- Introduction of APT2021

PARTEC - International Congress on Particle Technology

POWTECH is the international exhibition for powder processing and handling, which is held with *PARTEC* ever three years at Nuremberg, Germany.


PARTEC 2019 was chaired by Prof. Stefan Heinrich from Hamburg University of Technology.

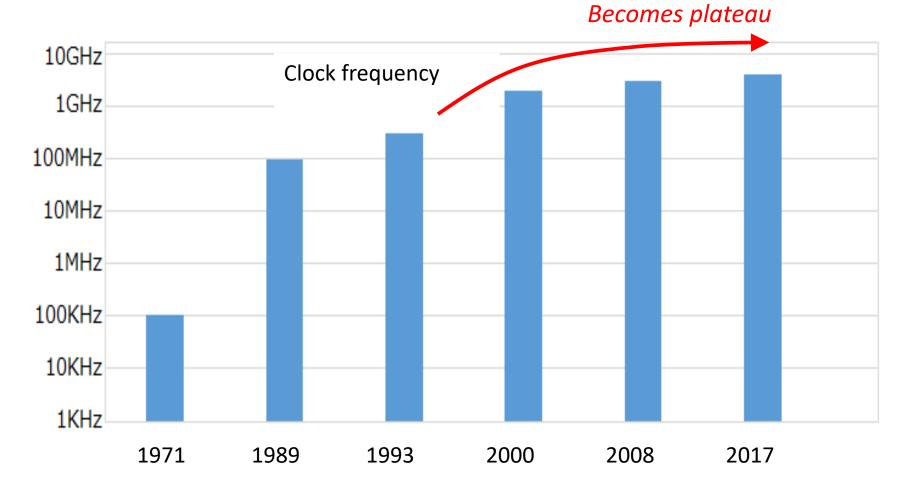
April 9–11, 2019 | Nürnberg, Germany

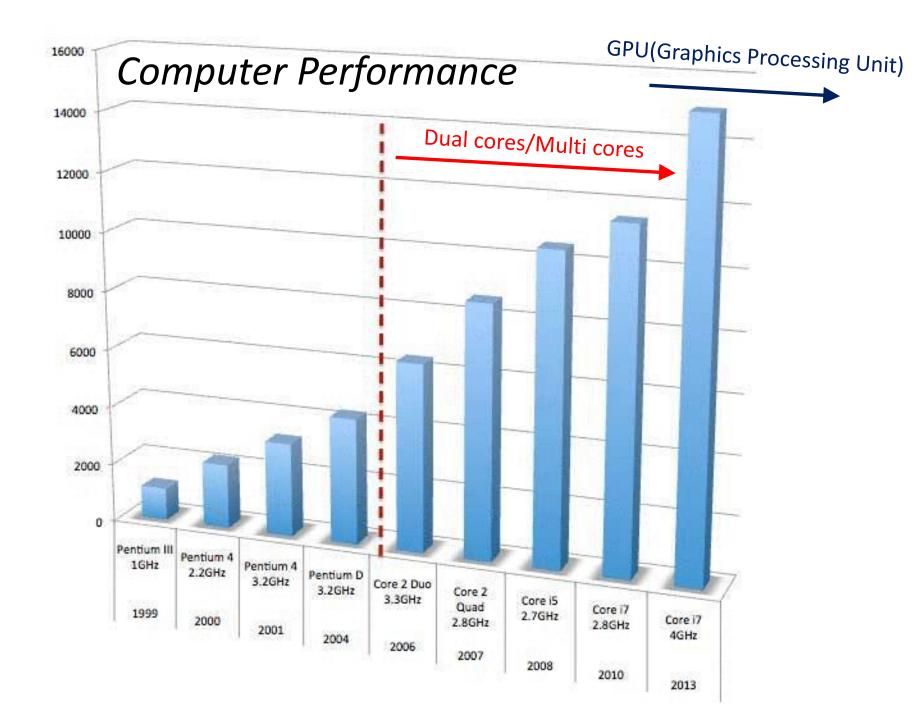
- 244 oral presentations and 169 poster presentations in the four-day conference.
- Speakers were gathered from 22 countries.
- Approximately 80% of the total speakers came from Europe.
- 57% of the total speakers were from Germany.

Sesseion	No. of speakers	Ratio of speakers
Modelling and Simulation	40	16.4%
Particle Technology for Pharmaceuticals	19	7.8%
Fluidization and Multiphase Flow	18	7.4%
Characterization of Particles	17	7.0%
Particle and Bulk Powder Characterizatic	17	7.0%
Agglomeration and Granulation	16	6.6%
Particle Interactions and Interfaces	12	4.9%
Application of Particle Technology	11	4.5%
Formation and Synthesis of Particles	10	4.1%
Seperation	10	4.1%
Handling and Flow of Particulate Systems	9	3.7%
Particles for Additive Manufacturing	9	3.7%
Comminution	9	3.7%
DynSim SPP 1679	8	3.3%
Nano Hybrids	8	3.3%
Particle Design and Functionalization	7	2.9%
Interface Properties	6	2.5%
Mechanics of Particulate Solids	5	2.0%
Handling and Flow of Particulate Systems	4	1.6%
Mixing	3	1.2%
Particle Technology for Energy Systems	3	1.2%
Life and Food Science	3	1.2%
(Total)	244	100.0%

Table 1 The number of oral presentations in each session

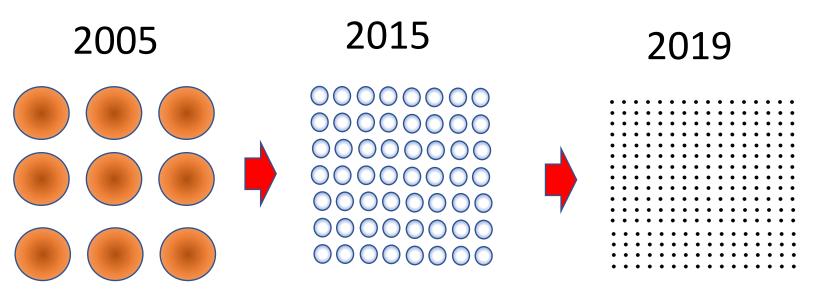
Session of "Modeling and Simulation" gathered largest number of presentation (Total 40 presentations).


Among the total 40 presentations in this session, 60% of the presentations were related to DEM (Discrete Element Simulation).


Presentations related to DEM simulation can also be seen in other sessions.

It is obvious that the DEM is one of the major topics in powder technology.

Advance in DEM Simulation


Growth of CPU

Future of modeling, simulation, date processing

1 *l* mixing DEM calculation with PC

3 mm $ imes$ 10,000 particles	300 μ m $ imes$ 10,000,000particles	70 μ m $ imes$ 1.0B particles
Single-core	Multi-core Single GPU	Multi-core Multi-GPU

Simulation of powder processing can be conducted in almost real particle size !!

Expected Technology

- Precise contact model (particle adhesion force)
- Introduction of surface property
- Particle deformation

Use of IoT and AI in powder technology

In general, enormous experimental data (so called BIG data) of powder processing contains fluctuation components. By using the AI technology, only the fluctuation component can be eliminated while leaving the tendency.

Determination of optimal operating parameter, increase in processing capacity, and improvement of energy consumption efficiency can be conducted by using the BIG data with AI.

Prediction of complicated powder behavior and scaling-up characteristics are also possible by using the AI with automatic learning function such as Neural Network (NN).

Also, precise control of powder processing can be realized by using control algorithms such as fuzzy logic and NN.

It is expected that number of researches regarding the IoT and AI will increase more and more in powder technology.

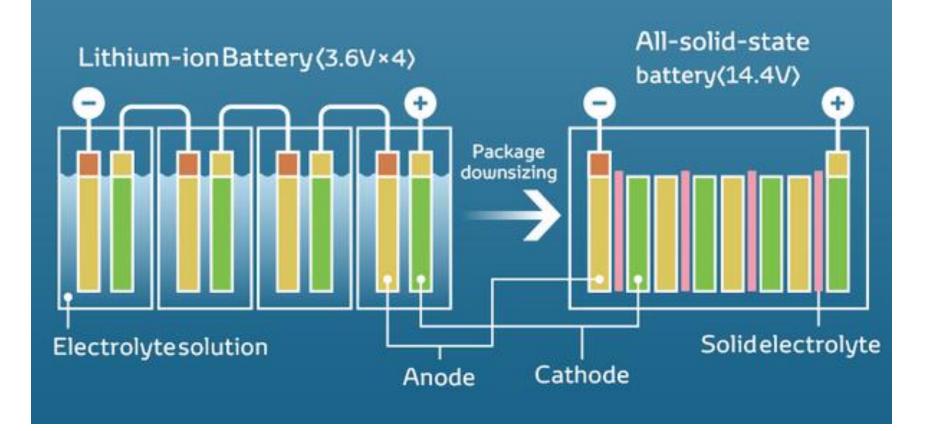
Future of gasoline engine German Government Voted to Stop Internal Combustion

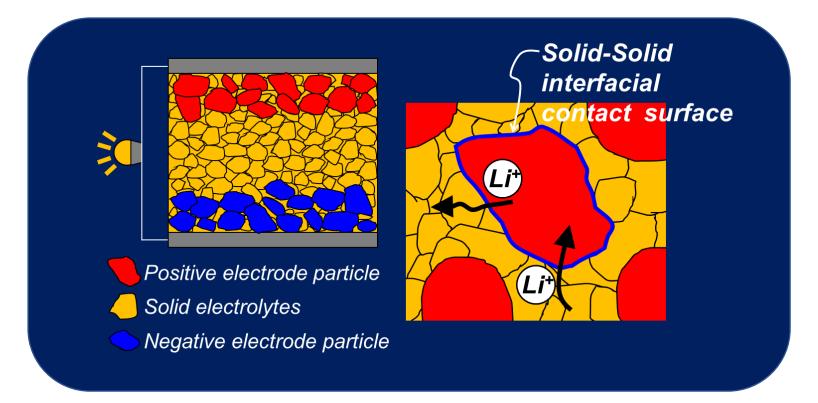
Engines in EU by 2030. Oct.6, 2016

U.K. pledged to stop the sale of new gasoline and diesel cars by 2040, following a similar move by France. July 26, 2017

Model S (Tesla)

AA battery size


7,000 batteries are installed under body



Flammable electrolyte solution causes liquid leak and explosion

Ideal electrode structure for all solid Lithium Ion battery

- Transfer of Li⁺ ions only occurs at the interfacial contact between electrode particles and solid electrolytes
- This requires well-designed electrode structure, in which the electrode particle contacts with the solid electrolytes

Announcement for

The 8th Asian Particle Technology (APT2021)

October 11 (Mon.)~14 (Thr.) 2021

Conference Chair: S. Watano

Bullet train (SHINKANSEN)

Osaka \rightarrow Kyoto15minOsaka \rightarrow Nogoya1.0 hrsOsaka \rightarrow Tokyo2.5 hrs

Kyoto Nagoya Tokyo

Osaka

USJ Japan

Osaka Castle

Osaka Prefecture

Intex Osaka

Kansai Int. airport

Osaka Prefecture University

INTEX OSAKA International Exhibition Center POWTEX OSAKA 2021 in October The 14th Powder Technology Exhibition Osaka.

See you in Osaka Japan 2021

