

Modeling Porosity Development during Drying of **Liquids and Slurries**

Jing Chen, Xiang Lu, Jinqing Wang, Reza Kharaghani

Thermal Process Engineering, University Magdeburg, Germany

Previous Work: Modeling of Bubble Dynamics

Coupled Bubble Dynamics

Gas diffusion in pore network

Single slurry droplet conceptualized as a pore-particle network

Geometry-controlled nucleation

Gas diffusion-controlled bubble growth

Drying kinetics and bubble dynamics

Same PNM, spherical network

Microfluidic observation

Nucleation on

particle surfaces

Convex interface

pressure drop to 1 bar

resulting from

5 s

Drying kinetics: bubble vs. non-bubble PNM simulations

Saturation profiles: bubble vs. non-bubble PNM simulations

Evolution of gas concentration profiles

Current status and future directions

Until now: Fixed structure, focus on drying kinetics with bubbles Next: Model morphology evolution and its impact on drying kinetics

Acknowledgement

This work has received financial support from the International Fine Particle Research Institute (Project ID: 141A).