KU LEUVEN

Investigation of capillary (nano)suspensions

IFPRI Annual Meeting 2025, Marseille, France

Erin Koos

KU Leuven Department of Chemical Engineering Section Soft Matter, Rheology and Technology

The capillary suspension phenomenon

² E. Koos and N. Willenbacher, *Science* **331(6019)**, 897 (2011)

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Dewetting Fingering Instability in Capillary Suspensions: Role of Particles and Liquid Bridges

Lingyue Liu¹, Mete Abbot², Philipp Brockmann^{2,} Ilia V. Roisman^{2,} Jeanette Hussong², **Erin Koos**¹

KU Leuven, Department of Chemical Engineering Section Soft Matter, Rheology and Technology¹ Technical University of Darmstadt, Institute for Fluid Mechanics and Aerodynamics²

Liu, L., Abbot, M., Brockmann, P., Roisman, I.V., Hussong, J., Koos, E. Langmuir, 41(8), 5399-5409. (2025)

Capillary nanosuspension (S-L-L-S)

E. Koos and N. Willenbacher, *Science* **331**(6019), 897 (2011)

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Direct ink writing of capillary suspension

Normal ink suspension: cracks and fractures

- Capillary suspension is useful for 3D printing
- Failure mechanism/residual not studied
- Stretching is important in fast printing

5 S. Smedt et al., *Curr. Opin. Colloid Interface Sci.* **75**, 101889 (2024) Fadoul and Coussot, *Fluids*, 4(1), 53, 2019

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

- Samples with smaller diameters → Patterns all internally connected
- Cavitation cuts liquid branches connections, causing more smaller dots, decreasing length

Capillary suspension dewetting

0.98

area (/)

Normalized . 0.94 · 0.92 ·

0.90 -

- Initial stage: homogenize (mostly) shrinkage up to 10% area
- Unstable stage: Instability high → pressure drop compensated by cavitation
- Cavitation increases pattern length that do not shrink like liquid suspensions

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Capillary nanosuspension dewetting

- Pattern length fitted power law with R₀, coefficient = 1.55 < 2
- Capillary suspensions show radius dependence, NPs homogenize samples
- NPs promote cavitation → center complexity, pattern break at rims

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

How does fingering instability influence sample deposition?

Without NPs

Top view

With NPs

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

KU LEUVEN

Side view

NP effect on residual area ratio A_{final}/A₀

Take home messages

- Microparticles in pure liquid increase the number of fingers and the total dendritic length, serving as nucleation sites.
- **Capillary forces** provide a strong sample-spanning network with high **elasticity**. The instability is significantly **suppressed** at the center and the outer regions.
- Just 0.01% NPs make patterns more consistent and predictable, reducing sample-to-sample variation
- NPs transfer sample splitting from adhesive failure (uneven distribution) to cohesive failure (even distribution)

Liu, L., Abbot, M., Brockmann, P., Roisman, I.V., Hussong, J., Koos, E. Langmuir, 41(8), 5399-5409. (2025)

Capillary force-driven particle orientation in rod networks

Lingyue Liu¹, Sebastian Gassenmeier¹ and Erin Koos¹

KU Leuven, Department of Chemical Engineering Section Soft Matter, Rheology and Technology¹

L. Liu, S. Gassenmeier, E. Koos Arxiv, JCIS (First revision) (2025)

The capillary suspension phenomenon

E. Koos and N. Willenbacher, *Science* **331(6019)**, 897 (2011)

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Influence of secondary liquid volume

- No sec liquid
 - Sedimentation
 - Longer axes oriented on x-y plane
- With increasing volume fraction
 - Sessile drops increase
 - More side contact

- Sec liquid volume \uparrow
- Particles orient randomly
- Larger clusters oriented on x-y plane

Image analysis – Detection & 3D tracking

- Particle eigenvector calculated using voxel list
 - Longer axis (red line) determined
 - φ (0 90°, vertical flat)
 - ϑ(0 − 180°)

70

x (µm)

- Center particle in **black**, neighbors in **blue**
- Particle neighbor & contact type characterization
 - Surface distance criteria
 - Side: $\pm 10^{\circ}$ in φ and ϑ
 - Point: all the non-side contact particles

Secondary liquid vs averaged polar angle φ

- $\phi = 0^{\circ} \rightarrow$ perfectly perpendicular to x-y plane
- Assistant line = theoretical distribution
 - Higher the φ , the larger the hemisphere area
- $\phi_{sec} = 0\%$
 - Granular bed
 - Mostly flat against slide $\varphi = 80^{\circ} 90^{\circ}$
- $\phi_{sec} = 0.375\%$ and 0.5625%
 - Particle gel
 - Shift towards smaller angles and random distribution
- $\phi_{sec} = 0.75\%$
 - Saturation (large clusters)
 - Still fairly random, but some clusters oriented against (stick to) slide (≈ 90°)

Coordination number *z*, clustering coefficient *c*

- Coordination number z
- Clustering coefficient c

$$c = \frac{2e}{z(z-1)}$$

- *e* = solid bonds, neighboring conctact
- z = dotted bonds, direct contact
- 2d sphere configuration:
 - For $z = 3, c \le \frac{2}{3}$
- 2d rod configuration
 - For z = 3, c = 1 possible
- 3d configuration much more complicated

Secondary liquid shifts normal distribution towards left

- Granular packing peaks at 10
- Capillary suspension peaks at 4

Liquid promotes c = 0 and c = 1

- *c* = 0, rods random, homogenous
- c = 1, rods interconnected, point contacts, high local particle density

- In spherical systems: high z corresponds to high c, aggregation \rightarrow more neighbors \rightarrow more clustered structure
- In rod systems:
 - higher $z \rightarrow \text{lower } c \& \text{lower side contact}$
 - random distribution \rightarrow more accommodation of point contact
- Note: particles with $z \le 1$ (with liquid) & 2 (granular) eliminated due to biased detected on the box edges

Average side contact over *z*

Rod gels: more sec liquid → more chance of side contact

Rod suspensions: fewer side contact spotted, lack of capillary bridges for orientation alignment

Note: particles with $z \leq 1$ (with liquid) & 2 (granular) eliminated due to biased detected on the box edges

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

- 0% suspension \rightarrow unmeasurable moduli
- 0.375% sec liquid
 - Shorter LVE
 - Earlier flow point
- 0.5625% & 0.75% liquid
 - Prolonged LVE
 - Delayed flow point
- Sphere system has a **longer** LVE and more **delayed** flow point ($\phi_{sphere} = 15 \%$, $\frac{\phi_{sec}}{\phi_{sec}} = 5\%$)
- Potential reasons:
 - From $0\% \rightarrow 0.375\%$ liquid, weak gel formed
 - Random distribution with less clustered network
 - Limited liquid bridge volume & number resulting in brittle connection → earlier flow
 - Spherical particles are more **easily** to **reform** bridges once previous connections are broken

- A: Start to displace
- B: Maximum deformation
- C: Stabilize
- Rods rotate in clusters
 without clear direction

Α

В

С

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

- ROI 1, 2, 3 show movement in different directions
- Within clusters, the particle orientation show great alignment
- All three clusters rotate align in gradient direction under shear

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Take home messages

- 1. Rod-based capillary suspensions change contact type from point-to-point to side-to-side contact as secondary liquid increases.
- 2. Unlike spheres, the clustering coefficient of rods decreases with increasing coordination number.
- 3. Rod-based capillary suspensions exhibit higher sensitivity to deformation.
- 4. During yielding, particle clusters move in completely different directions with collective rotation. while maintaining their internal structure.

L. Liu, S. Gassenmeier, E. Koos Arxiv, JCIS (First revision) (2025)

Identifying structural failure in attractive gels via recovery rheology

Lingyue Liu¹, Krutarth Kamani², Simon A. Rogers² and Erin Koos¹

KU Leuven, Department of Chemical Engineering Section Soft Matter, Rheology and Technology¹ University of Illinois Urbana-Champaign Urbana, Department of Chemical and Biomolecular Engineering²

Decomposed classic amplitude sweep

- As strain amplitude increases, structure breaks
- Normal amplitude sweep uses averaged moduli
- Using SPP, we decompose them into instantaneous moduli
- Interesting range = after
 LVE, before slip

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

29

What we can see globally during each phase?

Phase1: Stretching/compression

Phase2: Stretching/compression+ Potential bridge snapping

What we can see globally during each phase?

Phase3: nothing optically

Phase4: nothing optically

Phase5: Relaxation

• Phase3 + 4 are responsible for the majority **stress** change, however, **no** optical displacement observed

Rheo-optic recovery rheology of yield stress fluid

- Investigation: how the capillary suspensions relax differently at different parts of the oscillation cycle
- Decompose strain into (un)recoverable
- Combining with Rheoconfocal: track displacement of recovery

Y.H. Shim, S.A. Rogers; *Physics of Fluids*, 2023; 35 (6): 063117
J. Lee, et al., *Journal of Rheology*, 2019; 63 (6): 863–881.
J. Allard, et al., in preparation

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Understanding the average behavior through recovery

- Capillary suspension tested by UIUC
- Similar trends in G' and G" as a Carbopol 980
- First: Amplitude sweep, pick interesting strain amplitudes A, B, C,

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

- Lissajous plot → Rate plot (Unrecoverable rate vs Recoverable rate)
- At this strain, experiments were repeated 64 times to plot (Un)recoverable rate plot
- Most points are dominantly recoverable strains with one outlier

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

Rate plots at different strain amplitudes

- γ_0 increases, less points at the gray region (recoverable)
- Controdictory regrading physical meaning of phases

Department of Chemical Engineering Section Soft Matter, Rheology and Technology

• When recoverable rate & stress derivative plot over time (right), they align well

- Circled: sample acquire recoverable rate **slower**, $\delta\sigma/\delta t \approx 0 \rightarrow$ stretching contributes more to unrecoverable deformation. At $\gamma_{rec} = 0$, a γ_{rec} max is reached
- Traditional recovery rheology definition is not suitable for geometric constrained sample

Outlook

- Detailed explanation of the physical meanings of phases \rightarrow Lingyue: Poster
- Focus on the differences between the optical and rheological part
- Delve into the strain plot and rate plot, the mechnisms of yielding

Department of Chemical Engineering Section Soft Matter, Rheology and Technology