ETH zürich

Florence Müller

Vincent Niggel

Pierre Lehéricy

Laura Stricker

SOFTMAT

ETH zürich

Objectives

- Bottom up SIDS
- Bottom down SIDS
- Outlook and plan for 22-23

Complexity in model systems

Simplified industrial dispersions

- **Objectives**
- Sottom up SIDS
- Bottom down SIDS
- Outlook and plan for 22-23

Targeted dispensing of colloidal gels

https://www.youtube.com/watch?v=NWbubR2pupg

Koumakis, N., et al., *Tuning colloidal gels by shear*. Soft Matter, 2015. **11**(23): p. 4640-8.

Soft Materials Laboratory

SOFTMAT

Engineer the gels microstructure through:

- Primary particle properties
 - Chemistry
 - Size and shape
 - Topography
- Suspending media properties
 - Composition
 - Density
 - Polarity
- Interparticle forces
 - Macromolecular composition
- Processing
 - Shear stresses

Investigating the influence of primary particle surface topography on bulk rheological properties under shear

SOFTMAT

Smooth primary particles

Rolling and sliding of particles under shear

Rough primary particles

Interlocking of particles under shear

Surface roughness:

Inhibits flow densification

Open network structure

Goal:

- Investigate influence of surface roughness on the yielding behavior of particle gels
 - Comparable systems in terms of interparticle forces
 - Only tune the surface roughness

Problem:

- Thixotropic behavior of colloidal gels
- Pre-shear conditioning will modify the smooth and rough gels in a different way
 - Difficult to compare

Model system requirements

Solution:

- Thermoreversible system
- Induce gelation inside measurement cell

- Comparable attractive interactions
- "Rejuvinate" the structure between measurements

Model system

- SiO₂ particle
- Octadecyl brush (C₁₈)
- Suspended in tetradecane (C₁₄)
- Impart different roughnesses on the SiO₂ particles
- Maintain comparable hydrodynamic radii

Soft Materials Laboratory

Existing particle grafting approaches

S©FTMAT

Murray, Eoin, et al. "Synthesis of Monodisperse Silica Nanoparticles dispersable in Non-Polar Solvents." *Advanced Engineering Materials* 12.5 (2010): 374-378.

Synthesis approach for controlled octadecyl grafting to silica particles with -NH -yne click-like chemistry

26.04.2022 10

Thermoreversible colloidal gel system

Rough particle synthesis

Electrostatically driven heteroaggregation

Positively charged core particle

Negatively charged berry particle

Coat with aminosilane as a stabilizing layer and functional grafting

Tune particle roughness:

- Size of berry particle
- Surface coverage of berry particles
- Thickness of stabilizing layer

Zanini, M., et al., *Fabrication of rough colloids by heteroaggregation*. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017 **532**: p. 116-124.

Smooth SiO₂ particles

200 nm

Raspberry particles

Soft Materials Laboratory

Thermoreversible gels can be made with rough systems

Synthesis of a rough primary particle system with comparable properties to the smooth particle system

ETH zürich

Soft Materials Laboratory

Surface roughness increases interparticle forces

Plateau moduli in gel state are comparableRoughness comes into play for low volume fractions

Apparent yield stress is significantly higher for the rough particle systems

Rough particle gels recover fully and quickly

Ultrafast rheo-confocal setup

Dual camera setup 1200 FPS full frame (fast acquisition) 4 MP (high resolution acquisition) Confocal scanner 170nm xy resolution, 450nm z resolution 1000 FPS full frame Strain-controlled rheometer Counter-rotative shear cell with deported second motor

Colombo et al., Korea-Aust. Rheol. J. 31, 2019

Model depletion gel under shear

Model system

PMMA-g-PHSA depletion gel

- *\$\$*~44%
- 1.1µm diameter
- 8% polydispersity
- Suspended in squalene
- Polybutadiene, M=1.2.10⁶ g/mol, c/c*=0.42

Confocal microscopy

- Laser line : 488 nm
- Exposure time : 200 ms
- Frame rate : 5 FPS
- Laser intensity : 10% I_{max}
- Imaging 20µm over the glass slide

Rheology

- CP15-6 geometry
- 200 s⁻¹ pre-shear for 2 minutes
- 30 minutes, monitored by SAOS 1% at 1 Hz
- Shearing at constant shear rate in counter rotation mode

Particle tracking

- ImageJ plugin TrackMate
- Extraction of particles
- Extraction of tracks

Setup upgrades – fast scanning liquid lens

Breathing effect correction

Radial drift

Displacement fields (gels)

Thinning-thickening

22

Particle suspensions : tracking rotation

ETH zürich

Few

fluorescent

asperities

Ilhan et al., J. Colloid Interface Sci. (2020)

Particle suspensions : tracking rotation

Fixed volume fraction ; increasing number of fluorescent particles

θ_{z} $\dot{\theta}^{(\circ.s^{-1})}$ Niggel et al, in preparation -100 injection rate $(\mu L.hr^{-1})$

ETH zürich

- **Objectives**
- Sottom up SIDS
- **Matter Solution SIDS**
- Outlook and plan for 22-23

SIDS

- Soft system : Carbopol
- Rougher system
- Latex filler system
- Proteins as aggregated systems

 $\tau = \tau_{\rm y} + K \dot{\gamma}^n, \quad \tau \ge \tau_{\rm y}$

$$\boldsymbol{\sigma}^{d} = 2\eta(\tau_{eq})\boldsymbol{D}_{p}$$
$$\eta(\tau_{eq}) = \eta_{0} \left(1 + \left(\frac{\tau_{eq}}{\tau_{0}}\right)^{2}\right)^{\frac{n-1}{2n}} = \eta_{0}a(\tau_{eq})$$
$$\tau = G\gamma_{e}$$
$$\dot{\gamma}_{e} = \dot{\gamma} - \dot{\gamma}_{p}$$
$$\dot{\gamma}_{p} = \frac{\tau}{\eta(\tau_{eq})}$$
$$\eta(\tau) = \eta_{0}a_{\tau}(\tau)$$

ETH zürich

- **Objectives**
- Sottom up SIDS
- **Matter Single Settimes and Single Settimes Settimes and Settimes an**
- Outlook and plan for 22-23

Conclusions

Toolbox for colloidal rheology understanding and design:

model systems which enable us to interrogate mechanisms
rheological techniques which deconvolute the contributions to the stress
structural techniques which probe pertinent time and length scales

Challenges:

non-model systems and yet interrogate mechanisms
complex flows
HF during flow/processing