



# Adhesion of powders to metal surfaces during compaction

Ahmad Ramahi, Vishal Shinde and Csaba Sinka\*

School of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK

| Background and objectives                                                                         | Materials                         |                                                                                   |           |                           |                                             |                       |
|---------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|-----------|---------------------------|---------------------------------------------|-----------------------|
| Adhesion of powders to metal surfaces during compaction (referred to as "sticking") is a          | Material                          | Formula                                                                           | Туре      | Sticking/ Not<br>Sticking | Grade/Provider                              | Melting Point<br>[°C] |
| catalysts etc. Sticking is difficult to predict in early stage of product formulation and process | Ibuprofen                         | CH <sub>13</sub> H <sub>18</sub> O <sub>2</sub>                                   | API       | Sticking                  | Ibuprofen 50-<br>GMP Pharma Grade<br>(BASF) | 50-85                 |
| machines such as rotary tablet presses are used. The remedy consists of stopping                  | Acetylsalicylic Acid<br>(Aspirin) | C <sub>9</sub> H <sub>8</sub> O <sub>4</sub>                                      | API       | Sticking                  | A5376 (Sigma Aldrich)                       | 135                   |
|                                                                                                   | Paracetamol                       | C <sub>8</sub> H <sub>9</sub> NO <sub>2</sub>                                     | API       | Not Sticking              | A5000 (Sigma Aldrich)                       | 159                   |
| builds up on the tooling surfaces again. In pharmaceuticals it is believed that 25% of solid      | Mannitol (Pearlitol)              | $C_6H_{14}O_6$                                                                    | Excipient | Sticking                  | SD200 (Roquette)                            | 166 - 170             |
| dosage forms are affected by sticking.                                                            | NEOSORB<br>(Sorbitol)             | C <sub>6</sub> H <sub>14</sub> O <sub>6</sub>                                     | Excipient | Sticking                  | P100C (Roquette)                            | 97                    |
|                                                                                                   | Maize Starch B                    | (C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> ) <sub>n</sub> +(H <sub>2</sub> O) | Excipient | Sticking                  | Maize starch                                | 257                   |



## **Objectives**:

- Establish a test method to quantify material adhesion on compaction tooling over an industrially relevant range of process and environmental conditions.
- Identify the key factors affecting the amount and/or rate of powder adhesion on 2. compaction tooling including: powder properties (e.g. mechanical, thermal), powder tool interactions (friction, adhesion), tooling materials and finish, compaction parameters (stress, rate) and environmental conditions (temperature, relative humidity).
- 3. Establish a predictive criteria for the propensity of adhesion given a set of molecular/crystal properties and process/environmental conditions.

# Sticking hypotheses:

1. Temperature. Sticking can be understood as a coupled thermo-mechanical problem with two sources of heat: 1) Powder compaction involves dissipative processes that generate heat and 2) At the tool interface heat is also generated due to friction. As sticking (gradual deposition of the material to surfaces) progresses the properties of the materials and surfaces evolve, e.g. phase transformations due to stress, strain rate, temperature. 2. Humidity. Moisture uptake by hygroscopic materials leads to water acting as a binder at

the interfaces, leading to sticking.

3. Particle breakage. Brittle materials or granules break during compaction, creating new surfaces. These new unlubricated surfaces give cohesion/strength to compact but also lead to sticking.

# Heated die observations

| Microcel                          | (C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> ) <sub>n</sub>                       | Excipient | Not Sticking | MC102 (Roquette)              | 260 - 270       |
|-----------------------------------|-------------------------------------------------------------------------------------|-----------|--------------|-------------------------------|-----------------|
| Lactose Granulated                | C <sub>12</sub> H <sub>22</sub> O <sub>11</sub>                                     | Excipient | Not Sticking | SuperTab 30GR (DFE<br>Pharma) | 202 - 222       |
| Lactose Spray Dried               | C <sub>12</sub> H <sub>22</sub> O <sub>11</sub>                                     | Excipient | Not Sticking | SuperTab 11SD (DFE<br>Pharma) | 202 - 222       |
| Glycolys                          | (C <sub>2</sub> H <sub>4</sub> O <sub>3</sub> ) <sub>n</sub> Na <sub>n</sub>        | Excipient | Sticking     | Potato starch<br>(Roquette)   | -               |
| Solutab A (Croscarmellose sodium) | C <sub>8</sub> H <sub>16</sub> NaO <sub>8</sub>                                     | Excipient | -            | Solutab A (Roquette)          | Greater than 90 |
| Magnesium<br>Stearate             | [CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> CO <sub>2</sub> ] <sub>2</sub> Mg | Lubricant | -            | -                             | 89              |

# Kelvin probe AFM

Kelvin Probe Microscopy (KPM) is a type of scanning force microscopy in which the contactpotential-difference between two surfaces is measured.



relative to the surface is noticed on all three metal surfaces. These features are NOT powders deposited on the surface.

The potential map shows a significant variation in the potential only for the 5cycles punch. Therefore, the height variations in the 1-cycle punch are surface features and not residues of powder.

| Room<br>Temperature | Pressur<br>e<br>[MPa] | Thickness<br>[mm] | Notes                     | Elevated<br>Temperature                                                                                                                                                                                               | Pressure<br>[MPa] | Thickness<br>[mm] | Notes                 | NUL.<br>B10 Material Test System |
|---------------------|-----------------------|-------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------|----------------------------------|
| Ibuprofen           | 20                    | 4.5               | Hazing                    |                                                                                                                                                                                                                       | 20                | 4.5               | Major sticking        |                                  |
|                     | 50                    | 4.3               | Minor sticking            |                                                                                                                                                                                                                       | 50                | 4.3               | Major sticking        |                                  |
|                     | 75                    | 4.2               | Hazing                    |                                                                                                                                                                                                                       | 75                | 4.0               | Major sticking        |                                  |
|                     | 100                   | 4.1               | Minor sticking            | Ibuprofen                                                                                                                                                                                                             | 100               | 4.2               | Major sticking        |                                  |
|                     | 150                   | 4.1               | Minor sticking            |                                                                                                                                                                                                                       | 100               | 4.1               |                       |                                  |
|                     | 200                   | 4.1               | Minor sticking            |                                                                                                                                                                                                                       | 150               | 4.1               | Major sticking        |                                  |
|                     | 250                   | 4.1               | Minor sticking            |                                                                                                                                                                                                                       | 200               | 4.1               | Major sticking        |                                  |
|                     | 20                    | -                 | Tablet not formed         | Paracetam<br>ol                                                                                                                                                                                                       | 75                | 4.1               | Weak tablet           |                                  |
|                     | 50                    | -                 | Tablet not formed         |                                                                                                                                                                                                                       | 100               | 3.9               | Minor sticking        |                                  |
| _                   | 75                    | 4.1               | Weak tablet               |                                                                                                                                                                                                                       | 150               | 3.9               | Minor sticking        |                                  |
| Paracetamol         | 100                   | 3.9               | No sticking               |                                                                                                                                                                                                                       | 200               | -                 |                       |                                  |
|                     | 150                   | 3.9               | No sticking               |                                                                                                                                                                                                                       | 200               | -                 |                       |                                  |
|                     | 200                   | -                 | Lamination, electrostatic | - Mannitol -                                                                                                                                                                                                          | 5<br>00           | -                 | Allached particles    |                                  |
|                     | 250                   | -                 | Lamination, electrostatic |                                                                                                                                                                                                                       | 20                | -                 | Major sticking        |                                  |
|                     | 20                    | -                 | Hazing                    |                                                                                                                                                                                                                       | 50                | -                 | Major sticking        |                                  |
|                     | 50                    | -                 | Minor sticking            |                                                                                                                                                                                                                       | 75                | -                 | Major sticking        |                                  |
|                     | 75                    | -                 | Minor sticking            | <ul> <li>Leicester sticking classification</li> <li>No sticking: loose particles on surface</li> <li>Attached particles: removed with lab tissue</li> <li>Hazing: dull appearance, removed with lab tissue</li> </ul> |                   |                   | n                     |                                  |
| Mannitol            | 100                   | -                 | Minor sticking            |                                                                                                                                                                                                                       |                   |                   | surface               |                                  |
|                     | 150                   | -                 | Minor sticking            |                                                                                                                                                                                                                       |                   |                   | vith lab tissue       |                                  |
|                     | 200                   | -                 | Minor sticking            |                                                                                                                                                                                                                       |                   |                   | oved with lab tissue  |                                  |
| Stick               | ng o                  | bserva            | ations for Ibupr          | <ul> <li>Minor stick removal</li> <li>Major stick</li> </ul>                                                                                                                                                          | king: part        | ks of mate        | rial, solvent removal |                                  |
|                     |                       | 20 MPa            | 50 MPa                    | -                                                                                                                                                                                                                     | 75 MPa            |                   | 100 MPa               | 150 MPa 200 MPa                  |
| 24 °C               |                       |                   |                           |                                                                                                                                                                                                                       |                   | 10                |                       |                                  |
| 50 °C               |                       | <i>S</i>          |                           |                                                                                                                                                                                                                       |                   |                   |                       |                                  |



Clean

1-Cycle

KPM is a potential characterization tool for powder depositions on the punch surfaces.

## 5-Cycles (the light features are powder depositions)

# **Particle size measurements**



# **Conclusions and outlook**

- A trilayer punch-tablet system was developed for systematic sticking studies. We observed:
- Ibuprofen: sticking at room and elevated temperature.
- Mannitol at room temperature: sticking is influenced by compaction pressure and punch roughness. Further studies needed.
- Mannitol at elevated temperature: sticking.
- Paracetamol: little or no sticking at room and elevated temperature.

- Sticking is present for all compaction pressures at room and elevated temperatures. There is a clear increase in the amount of powder sticking at 50 °C.
- At 50 °C large groups of particles (highlighted in red) are sticking. This feature is not observed at room temperature (assumed to be a consequence of extended plastic deformation).



The KP AFM method was developed to observe sticking. Strain rate was identified as a potential parameter responsible for sticking.

# Future work:

- Heated die sticking experiments for: aspirin, maize starch, sorbitol, 2 lactose grades, microcrystalline cellulose.
- Measurement of trilayer interface strength.
- Effect of strain rate: compaction with drop impact tester at Leicester University.
- AFM with particle probe to test against different steel surfaces.

Infrared

Spinning dis

on surface of disk

- SEM/EDX of sticking.
- Rotary friction system.
- **PSD** measurements.
- Investigation of particle breakage hypothesis.
- Investigation of humidity hypothesis.





Presented at IFPRI AGM Brussels, 2022

\*Contact: Prof. Csaba Sinka, ics4@le.ac.uk