

## **IFPRI BRIEF TEMPLATE**

|                                                                | ⊠Project<br>□Works                        |                                                                                                                                                                                        | v <b>Collaboration</b>                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Descriptive T                                                  | co<br>ev                                  | mpaction, via a multi-                                                                                                                                                                 | d defect formation during powder<br>phase modeling framework that couples the<br>ure with air permeation dynamics through                                                                                                                                                                                                                                                                                      |  |
| Working Title <sup>1</sup>                                     |                                           | Air-induced defect formation during powder compaction                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>Technical Area<sup>2</sup> F = Particle Formation</b> , M = |                                           | = Particle Formation                                                                                                                                                                   | M = Modeling                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Date                                                           | 25                                        | -Jun-2019                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Short Descrip                                                  | an<br>ris<br>the<br>air                   | d strength developmen<br>e to pore pressure buil<br>e closing pores. If the c                                                                                                          | process not only results in large deformation<br>int of the powder compact, but also can give<br>ldup due to incomplete air escape through<br>compaction happens too fast, the buildup in<br>parable to the strength of the compact and<br>he solid structure.                                                                                                                                                 |  |
|                                                                | qu<br>sys<br>str<br>bu<br>20<br>rev<br>dy | antitatively understand<br>stematically study the<br>ength development and<br>ilds on prior IFPRI eff<br>18 project) and pore-so<br>view), but will offer a l<br>namics of highly-comp | op a novel air-solid coupling framework to<br>d the above phenomenon. It will<br>effect of air flow / permeation on the<br>ad defect formation of powder compacts. It<br>forts on compaction modeling (Zavaliangos,<br>scale transport modeling (Cnudde, 2014<br>brand-new perspective that integrates the<br>pressible fluid and porous deformable solid,<br>ility to predict air-induced tableting failures. |  |
|                                                                | an<br>Fu                                  | isotropies, and defects orther, modeling-based                                                                                                                                         | nsights into the formation of heterogeneities,<br>s in the powder compacts can be explored.<br>I process optimizations to avoid air<br>ted defect formation can be achieved.                                                                                                                                                                                                                                   |  |
| Objectives                                                     |                                           | simulation efforts<br>particulate structu<br>deformations, and<br>networks.<br>2. Develop (theoreti                                                                                    | irrent states in experimental, theoretical and<br>s on the interaction between evolving<br>ures, especially those under large<br>d the air/fluid flow through their porous<br>ical or simulation) framework that<br>ples the deforming powder bed with the                                                                                                                                                     |  |

<sup>&</sup>lt;sup>1</sup> Title used in meeting agendas and file archives <sup>2</sup> One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR = size reduction; M = modeling; SE = systems engineering

|       | <ul> <li>associated air permeation. Construct local 3D constitutive relations to be used in industrially-relevant contexts (e.g., particle sizes/properties, die/punch geometries, compaction paths) for defect prediction.</li> <li>3. Explore ways to incorporate select factors to better resemble realistic systems. Examples of such factors include: polydispersity, particle morphology, surface roughness, visco-elasticity, material mixture, etc.</li> <li>4. Derive predictive tools to assess the risk of processing failures and aid optimization of the powder compaction process. Allow for cross-validations against experimental results.</li> </ul>                                                                                                                                                                                                        |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Scope | <ul> <li>Included in scope: evolution of particulate structures under compaction, especially with large system-scale and particle-scale deformations; development of compact strength through particle bonding/adhesion; characterization of porous structures and the related air permeation behaviors; coupling between the solid structure evolution and air dynamics in the porous structure.</li> <li>Representative material properties that align with IFPRI interest will be included in the scope. The simulation framework should be amenable to experimental verification/validation.</li> <li>Considerations of the following and incorporation of them into the model will not be required but certainly encouraged: polydispersity, particle morphology, visco-elasticity, material mixture, particle breakage, particle surface interactions, etc.</li> </ul> |  |

| Recommended Contractors (2 or 3) |                         |                           |  |  |  |
|----------------------------------|-------------------------|---------------------------|--|--|--|
| Name                             | Institution             | Email Address             |  |  |  |
| Vanessa Magnanimo                | University of Twente    | v.magnanimo@utwente.nl    |  |  |  |
| Ken Kamrin                       | MIT                     | kkamrin@mit.edu           |  |  |  |
| John-Paul Latham                 | Imperial College London | j.p.latham@imperial.ac.uk |  |  |  |

| Submitted By: |                         |  |  |
|---------------|-------------------------|--|--|
| Name          | Organization            |  |  |
| Jie Ren       | Merck & Co., Inc. (USA) |  |  |
| Csaba Sinka   | University of Leicester |  |  |
| Konrad Herbst | Haldor Topsoe A/S       |  |  |
| Colin Hare    | University of Surrey    |  |  |