

IFPRI BRIEF TEMPLATE

Check One:	⊠Project	□Review	\square Collaboration
	□Workshop	□Other	

	To an		
Descriptive Title	Bulk friction and cohesion measurement at high/intermediate strain rates.		
Working Title ¹	Characterizing friction and cohesion at range of strain rates		
Technical Area ²	Dry		
Date	26/06/2019		
Short Description	Cohesion and friction are not intrinsic powder properties. They are a function of		
	stress and strain rate. Current industrial powder testers only characterize cohesion		
	and friction at a quasi-static strain rate. However, higher strain rates are prevalent in		
	most of industrial systems such as mix drums, high shear mixers, granulators, and		
	feeders. Phenomena such as mixing, feeding, and coalescence in granulation is		
	affected by powder cohesion and friction. Measurement of cohesion and friction at		
	industrially relevant strain rates will provide better understanding and control of the		
	processes.		
Objectives	- Develop a methodology for measuring both cohesion and friction in a		
	previously inaccessible range of strain rates.		
	- Based on the measurements, develop constitutive relations and propose a modelling framework for implementation.		
	- Demonstrate the predictive capabilities of this model for industrial scale		
	process e.g. high shear mixer, hopper flow.		
Scope	- Range of strain rates from quasi-static to high: with a focus on		
	intermediate/high.		
	- Industrial relevant wide range of stresses (150 pa to 100 kpa).		

Recommended Contractors (2 or 3)				
Name	Institution	Email Address		
Nathalie Vriend	Cambridge	nv253@cam.ac.uk		
J N Roux	Laboratoire Navier (Ecole des Ponts	Jean-Noel.Roux@ifsttar.fr		
	ParisTech),			
Ken Kamrin	MIT	kkamrin@mit.edu		

Submitted By:			
Name	Organization		
Prashant Gupta	P&G		
Subhash Thakur	Alkermes		
Poom Bunchatheeravate	Vertex Pharmaceuticals		
Kit Windows-Yule	University of Birmingham		
Jeremy Lechmann	Sandia labs		
Marty Murtagh	Corning		
Tim Freeman	Freeman Technologies		

 $^{^{1}}$ Title used in meeting agendas and file archives 2 One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR = size reduction; M = modeling; SE = systems engineering