

IFPRI BRIEF TEMPLATE

Check One:	⊠Project	□Review	\Box Collaboration
	\square Workshop	□Other	

Descriptive Title	Co-milling of materials	
Working Title ¹	Co-milling Co-milling	
Technical Area ²	SR	
Date	25 June 2019	
Short Description	1. Comparison of co-milling of products with singular milling followed by blending.	
	2. Materials which exhibit resistance to size reduction, whether	
	being hard or soft or very tough or for special	
	mechanochemical effects, may be better milled by	
	cooperative action in a mixture state.	
Objectives	1. Identify potential functionality improvement by co-milling: such as mixing, powder flow, milling dynamics,	
	mechanofusion and mill performance	
	2. Investigate the impact of milling parameters on PSD and	
	milling energy requirement of co-milled products vs singular milled products	
	3. What interactions occur between co-milled products and does this lead to behaviours (such as mechanofusion) that are	
	different than what would happen if the same products were milled separately and then simply mixed.	
	4. Conditions/criteria that could lead to preferential co-milling	
	over milling product separately. grinding of one product over another	
Scope	In scope:	
_	Ball mill and spiral jet mill.	
	Mixtures of organic, inorganic, fibrous (vegetable based)	
	Out of scope:	
	Simple mixing evaluation or models that could overlap with previous work done on powder mixing or segregation	

Recommended Contractors (2 or 3)				
Name	Institution	Email Address		
Aubrey Mainza	Cape Town	aubrey.mainza@uct.ac.za		
Luis Marcelo Tavares	Federal University of Rio de Janeiro	tavares@metalmat.ufrj.br		

 $^{^{1}}$ Title used in meeting agendas and file archives 2 One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR = size reduction; M = modeling; SE = systems engineering

Priscilla J Hill	Mississippi State University	phill@che.msstate.edu

Submitted By:				
Name	Organization			
Kyle Sala	Keurig Dr Pepper			
Jason Lang	Ecolab			
Scott Limestoll	Lincoln Electric			
Gary Liu	DuPont			
Jarrod Hart	Imerys			
Chuck Compson	Almatis			
Mark Snyder	Almatis			
Rohit Kumar	Alkermes			
Brian Levy Polis	FMC			
Lisa Taylor	Pfizer			
Pieter Vonk	DSM			
Filip Francqui	GranuTool			