

IFPRI BRIEF TEMPLATE

Check One:	⊠Project	☐ Review	\Box Collaboration
	\square Workshop	□ Other	

TD 1 (1 FD1)			
Descriptive Title	Kinetic model to predict particle morphology from Spray Drying.		
Working Title ¹	Drying Kinetics and Morphology		
Technical Area ²	Particle Formation		
Date	25/6/19		
Short Description	Spray Drying is a "black box" technology with limited predictability		
_	when transferring formulations from the laboratory to the pilot scale		
	of:		
	a) If a dry powder/particles will be formed and what conditions		
	(temperature) are required.		
	b) If a powder/particle is formed what morphology the particles will		
	have and does it vary with different process conditions.		
Objectives	An implementable numeric model for single droplet drying that can		
	predict product morphology based on inlet feed properties such as		
	rheological behavior, surface tension, composition etc using drying		
	kinetics as a basis. Temperature ranges should include above and		
	below the boiling point. The droplet size should be below 200um		
	and drying time scales on the order of less than 10 seconds. The		
	model should be validated by experiments.		
Scope	Solvent used should be water – not organic solvents (out of scope).		
	Compositions – should include dissolved solids (organic and		
	inorganic), saturated solutions and slurry suspensions.		
	The droplet size should be below 200um		
	Drying time in the order of 10s		
	Temperatures in the range of 50°C to 140°C (outlet temperature)		

Recommended Contractors (2 or 3)				
Name	Institution	Email Address		
Loredana Malafronte	ETH Zurich	Loredana.malafronte@hest.ethz.ch		
Maciej Jaskulski	University Lodz (Poland)	Maciej.jaskulski@p.lodz.pl		
Maarten Schutyser	Wageningen University (NL)	Maarten.schutyser@wur.nl		
Rosa Mondragon	Universitat Jaume (Valencia Spain)	mondragn@uji.es		

 $^{^{1}}$ Title used in meeting agendas and file archives 2 One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR = size reduction; M = modeling; SE = systems engineering

Submitted By:			
Name	Organization		
Vincent Meunier	Nestle		
Kare J. Engsted	Novozymes		
Andisheah Dadgar	Albermarle		
Judith Bonsall	Unilever		
Corey Rosenthal	Ecolab		