

Check One: Project

Descriptive Title	Powder spreadability at high temperatures	
Working Title ¹	Powder spreadability at high temperatures	
Technical Area ²	Dry systems, characterization, particle formation	
Date	June 25, 2019	
Short Description	Investigation of uniformity of thin powder films at various, but	
	typically high temperatures.	
Objectives	Understanding how powder properties (i.e mechanical properties,	
	thermal properties, surface properties, morphology) and spreading	
	mechanism (i.e. soft/rigid blade or rotating roller, spreading force,	
	spreading velocity, blade gap) affects the packing density and	
	surface uniformity of thin powder films at various temperatures.	
Scope	The quality of powder layers, specifically their packing density and	
	surface uniformity, is a critical factor influencing different industries	
	including the quality of components produced by powder bed	
	additive manufacturing (AM) processes (e.g. selective laser melting,	
	selective laser sintering, electron beam melting and binder jetting).	
	In addition, understanding the effect of temperature on powder	
	flowability is critical as a bulk solid's cohesive strength typically	
	increases with rising temperature. For example, exposure to elevated	
	temperature can permanently change the properties of the powders	
	which can limit the capability to reuse powders.	
	Establishing a correlation between powder properties, spreading	
	parameters and a quality index of thin powder film is crucial to	
	develop a standard powder spreadability metric. To achieve this	
	goal, one needs advanced characterization tools including confocal	
	microscopy to quantify the uniformity of powder layers as well as x-	
	ray microcomputed tomography to characterize powder packing	
	density. Understanding the physics of powder spreadability as it	
	relates to powder mechanical, thermal and chemical properties	
	should be considered.	

Recommended Contractors (2 or 3)				
Name	Institution	Email Address		
Atieh Moridi	Cornell University	moridi@cornell.edu		
Sneha Prabha Narra	WPI University	spnarra@wpi.edu		

Submitted By:

¹ Title used in meeting agendas and file archives ² One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR =size reduction; M =modeling; SE = systems engineering

Name	Organization
Michel Louge	IFPRI consultant
Marty Murtagh	Corning
Jeremy Lechman	Sandia