

IFPRI BRIEF TEMPLATE

Check One:	□Project	Review
	□Workshop	□Other

□ Collaboration

Descriptive Title	Mechanism and control of aeration and de-aeration for formulated		
- ·····	products		
Working Title ¹	Aeration and de-aeration		
Technical Area ²	Wet Systems		
Date	06/25/2019		
Short Description	Control of dissolved and undissolved air/gas in a product is very		
	important for cosmetic, food and pharmaceutical companies. The,		
	presence of air bubbles in cosmetic and pharmaceutical formulation		
	preparation is generally undesirable, yet, a controlled amount of		
	aeration is required to make other materials, such as foams. During		
	making and subsequent packing of these formulations, uncontrolled		
	amount of air is added/removed based on the process conditions.		
Objectives	1. The review seeks to understand the key mechanisms to control		
	the amount of aeration/de-aeration in a suspension/slurry/foam		
	from product making to packing operations. This includes both		
	dissolved and un-dissolved air/gas.		
	2. The review should also include typical process equipment used		
	for aeration/de-aeration with their associated pros and cons		
	related to scale, throughput, and cost		
Scope	1. Mechanism of air bubble formation/removal		
	2. Should include both external entrainment (through mixing,		
	pumping, pouring, jetting, powder incorporation) and internal		
	generation (through chemical reaction and physical changes)		
	3. Should include both dissolved and undissolved air		

Recommended Contractors (2 or 3)			
Name	Institution	Email Address	
Prof Philip Cox	University of Birmingham	p.w.cox@wlv.ac.uk	
Prof Marco Ramaioli	INRA/University of Surrey	marco.ramaioli@inra.fr	
Prof Ganesan Narsimhan	Purdue University	narsimha@purdue.edu	
Dr. L. L. Schramm	Saskatchewan Research		
	Council		

¹ Title used in meeting agendas and file archives ² One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR = size reduction; M = modeling; SE = systems engineering

Submitted By:		
Name	Organization	
Vidya Vidyapati	P&G	
John Hone	Syngenta	
Vincenzino Vivacqua	Johnson Matthey	
Brian Levy-Polis	FMC	
Rajeev Gorowara	Corteva	
Vincent Meunier	Nestle	
Eric Furst	University of Delaware	
Claire Gaiani	University of Lorraine	
Erin Koos	KU Leuven	
Wilson Poon	University of Edinburgh	