

IFPRI BRIEF TEMPLATE

Check One: Project □Workshop

Review □ Other

□ Collaboration

Descriptive Title	Survey of the state-of-the-art of dynamic flowsheet modeling tools		
	for solids processing		
Working Title ¹	Dynamic flowsheeting for solids processing - review		
Technical Area ²	Systems Engineering		
Date	26 th June 2019		
Short Description	Review of the state of the art of dynamic flowsheet modeling tools		
	for solids processing and a survey of current applications		
Objectives	The objectives of the review can be broken into several sections:		
	• Summary and review of the available dynamic flowsheet		
	software packages for solids processing		
	 Existing models and model methodologies 		
	 Identification of limitations of available unit 		
	operation models, critical missing unit operation		
	models and the level of integration between the unit		
	operation models		
	• Review of workflow features available in the		
	software that are required to enable the application of		
	integrated flowsheet models e.g. GSA, optimization		
	• Survey of the use of dynamic flowsheet modeling tools for		
	industrial applications		
	• Review of published literature from industry case		
	studies		
	• Data requirements for flowsheet model creation and		
	NID EDDM material characterization		
	NIR, FBRIM, Indienal characterization		
	the published work		
	• Identification of future opportunities/requirements of		
	• Identification of future opportunities/requirements of dynamic flowsheeting to enable systems engineering		
	approaches		
	\circ From learnings from the review and a round table		
	with IFPRI members an exploration of		
	 Current hurdles to adoption in industry and 		
	shortcomings in the state-of-the-art workflow		
	shoreonnings in the state of the art worknow		

¹ Title used in meeting agendas and file archives ² One or more from the following list: W = wet systems; D = dry systems; F = particle formation; SR =size reduction; M =modeling; SE = systems engineering

	 Suggestions for future developments to enable the forward looking objectives of industry with regards to system engineering
Scope	 The study should be limited to dynamic flowsheeting tools that have been updated within the last 12 months. Steady state tools are out of scope Populations balance models that are formulated on the conservation of mass/volume not on number To cover a wide range of particulate processes including wet granulation, dry granulation, direct compression, spray drying

Recommended Contractors (2 or 3) - * preferred				
Name	Institution	Email Address		
Ignacio E. Grossman*	Carnegie Mellon	grossman@cmu.edu		
Mario Eden*	Auburn University	edenmar@auburn.edu		
Marianthi Ierapetritou	Rutgers University	marianth@soe.rutgers.edu		
Thomas De Beer	Ghent University	Thomas.DeBeer@UGent.be		

Submitted By:			
Name	Organization		
John Hecht	P&G		
David Slade	PSE		
Christophe Grosjean	Syngenta		
Hugh Stitt	Johnson Matthey		
Paul Mort	U. Purdue		
Ninna Halberg Jokil	Haldor Topsoe		

Other comments:

Flowsheet models are integral to adopting a systems engineering approach to solids processing yet there is often a lack of knowledge in industry of the software packages available and how they can be applied. Several commercial tools are available for the development and deployment of dynamic flowsheets for particulate processes as well as other academic led, open source developments. This review will survey the available tools and methods that are available to industry, describing the state-of-the-art of the technology, the workflows for application and the obstacles preventing such a holistic approaches being adopted across solids processing industries.