

Check One:	□Project	⊠Review	\Box Collaboration
	□Workshop	□Other	

Descriptive Title	Stress concentrations in particulate materials and their inducement	
	1	
	for size reduction.	
Working Title	Induced stress concentration in milling	
Technical Area	Size reduction – SR	
Date	June 2025	
Short Description	Points of stress concentration in particles, including crystalline, amorphous, and composites thereof, are not well understood, yet of high relevance to size reduction of many functional materials. This proposal seeks a review of stress concentrations in particles (i.e., their structure and mechanisms) by material type including metals, ceramics, minerals (e.g., ores), and organic materials, both crystalline and amorphous.	
Objectives	Understand modes of stress concentration and effects relevant to powder processing (e.g., inducement of defects to aid comminution, residual stress occurring in conveying, compaction, etc.).	
Scope	 Materials – describe and define stress concentration (e.g., shear- induced transformation zones, defects on surfaces and/or within crystals, grain boundaries, etc.) and their modes of propagation according to the type of material – e.g., crystalline vs amorphous materials, along a grain boundary, residual stress at a surface, etc. Inducement of stress concentration – methods selected according to relevance for size reduction, dry and/or wet, where wet applies to immersed systems, e.g., slurries and/or partially-saturated systems. Methods can include mechanical pre-stressing, chemical etching, microwave, acoustic, electrical, thermal, etc. 	

Recommended Contractors (2 or 3)				
Name	Institution	Email Address		
Herbert Hui	Cornell Univ	ch45@cornel.edu		
Chloe Arson	Cornell Univ	Arson@cornell.edu		
Derek Warner	Cornell Univ	dhw52@cornell.edu		
Julia Greer	Caltech	jrgreer@caltech.edu		
David Rodney	Grenoble			
Damien Vandembrouq	ESPCI			
Michael Falk	Johns Hopkins			
Lisa Manning	Syracuse			

Submitted By:		
Name	Organization	

Wolfgang Peukert	TU Erlangen
Edouard Izard	Arcelor Mittal
Isabelle Deleris	Cargill
Paul Mort	Purdue Univ
Simon Greener	P&G
Michel Louge	Cornell Univ